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The iteration of the CebySev polynomial x2 - 2 generates a mixing transformation on 
the interval x E [-2,2]. Extensive computer experiments have demonstrated that this is a 
convenient method for generating sequences of pseudo-random numbers. Despite the 
eventual domination of cumulative roundoff errors the asymptotic statistical features 
of the mixing are preserved. Multiple sequences of stochastically independent variables 
may be generated by these techniques. In practical computations the CebySev mixing 
eventually terminates in long pseudo-ergodic cycles. These results are linked with the 
general problem of simulating the stochastic behavior of physical systems by means of 
functional iteration. 

Contents. 1. Introduction. 2. Randomness Criteria. 3. Computer Simulation of CebySev 
Mixing-3.1. Single Sequences of Pseudo-random Numbers; 3.2. Computer Simulations: 
Growth of Round-off Errors; 3.3. Computer Simulations: Free Running and Terminal 
Cycles; 3.4. Multiple Sequences of Pseudo-random Numbers; 4. Cebysev Mixing Theorems; 
Product Transformations; Probabilistic Metrics-Asymptotic Dispersion; Kolmogorov 
Entropy. 5. Variable Precision Simulations. 6. Terminal Cycles; Simulation of Pre-image 
Chains; Memory-Dependent Feedback. 7. Other Simulations of Random Processes; Proba- 
bilistic Metric for Baker’s Transformation; Brolin’s Theorem; Sarkovskii’s Theorem; 
Hamiltonian Mechanics; Flow Equation; Non-embcddable Functions. 

1. INTRODUCTION 

It is well known that the standard multiplicative congruence schemes for generating 
sequences of pseudo-random numbers have correlational defects [I]. The appearance 
of these correlations is consistent with Hamming’s astringent criterion “... if we can 
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see no pattern with reference to the particular application, then the sequence of 
numbers are random for that application, and we must be content with little more” [2]. 
However, in large scale computer applications involving the parallel operation of 
many random number generators it is vital to try for a “little more.” In particular in 
reactor and plasma simulations or the modeling of phase transitions in complex 
systems it is essential to have confidence from the outset that the results will reflect 
the inherent characteristics of the physical processes and not the latent stochastic 
dependences among the random number generators. One possible means for improv- 
ing the performance of random number algorithms is to draw on some of the results 
obtained during the last few decades in statistical physics and ergodic theory. For 
example, if strings of digits are generated by means of mixing transformations, there 
is a wealth of information which guarantees-at least in a theoretical sense-that 
the resulting sequences will have all the “right” properties associated with random 
numbers, i.e., equidistribution, normality, auto- and cross-correlations equivalent 
to white noise, ergodicity, statistical stability, etc. By contrast, the multiplicative 
and additive congruence schemes which are recommended for most computer software 
have a narrower conceptual footing in the theory of normal numbers [3-81. Since 
normality is in general not even preserved under a change of base [9], and practical 
simulations are liable to fall short of theoretical expectations, cf. Table III, it is not 
surprising that the congruence schemes are less versatile than mixing transformations 
in modeling the behavior of random systems. 

The practical implementation of any random number algorithm-excepting 
hybrid devices [lo]-is basically an experimental problem since digital networks are 
restricted to processing finite sets whereas all the theoretical schemes promise random 
behavior essentially only on sets of positive (non-atomic) measure. It is therefore a 
fortunate circumstance that the pseudo-random mixing sequences generated by the 
iteration of the second order CebySev polynomial x2 - 2, on the interval [-2, 21, 
can be approximated with excellent statistical fidelity on a wide variety of digital 
devices. In fact a central result of this work is that the numbers (4/7r) cos-l(@,+,) - 2, 
are to a very good approximation uniformly and “randomly” distributed between 
-2 and +2 when Zn+r is calculated in double precision from the simple recurrence 
Z nt1 = Zm2 - 2 [see eq. (3.27)]. Extensive trials carried out with such diverse 
machines as the HP-25, SR-52, SR-56, and HP-9100 (programmable calculators), 
and computers such as IBM 360/195, and UNIVAC 1108 have demonstrated that 
the computer generated sequences continue to exhibit all the “right” pseudo-random 
features even after the cumulative roundoff and truncation errors have been amplified 
by the iterations to the point where they dominate the numerical aspects of the calcula- 
tions. Of course all deterministic simulations of random processes on finite devices 
must eventually terminate in fixed points or fall into loops. In the CebySev case the 
computer experiments indicate that there are long intervals of “free running” preced- 
ing the appearance of terminal cycles: Specifically for N-state machines both the 
observed free running periods as well as the cycle lengths correspond to the optimum 
random value W/2; moreover, all the statistical properties of the Cebysev mixing are 
preserved even on the cycles. 
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For purposes of exposition it is convenient to consider the practical computing 
aspects of the CebySev iterations separately from their deeper ergodic properties. 
For instance the dependence of the rate of mixing or randomization on the machine 
capacity is of direct interest to the numerical analyst, whereas the correspondence 
of the mixing rate with say the Kolmogorov entropy has a subtler connection with 
practical computations. Accordingly we begin with a brief recapitulation of general 
criteria for pseudo-random number generators (Section 2), and then present a 
summary of our practical experience in simulating the x2 - 2 mixing on a variety of 
slow and fast machines (Section 3). The diagnostics which enable us to monitor how 
well the machine generated sequences maintain their random character are of course 
all statistical in nature: These tests can be used to verify that the computer generated 
sequences indeed conform to the general randomness criteria given in Section 2, 
and also furnish the link to the underlying mathematical theory of mixing transforma- 
tions. In Section 4 we give a summary of this theory including results on product 
measures which are useful for the parallel generation of stochastically independent 
sequences [ll, 121. 

Since the x2 - 2 mixing effectively acts as an amplifier for computing noise, e.g., 
roundoff or truncation errors, it is obvious that corresponding to every machine and 
programming mode there will be a characteristic threshold in the number of iterations 
beyond which all numerical accuracy is obliterated. However, in virtue of the non- 
vanishing topological entropy of the mixing the randomization “renews” itself with 
every iteration and therefore the progressive numerical distortions introduced by 
computing noise are countered by a statistical stabilization of the mixing sequences. 
Where the balance is struck in practise between these opposing tendencies is of tours 
an experimental question which can be studied with variable precision simulations, 
e.g., l-60 bit routines (Section 5). The results confirm the intuitive expectation that 
larger capacity machines are superior in sustaining the pseudo-random character 
of the mixing. 

A curious feature which can be interpreted as a kind of stability property of the 
terminal cycles became apparent during the computer trials. Specifically, if the mixing 
simulations are started at arbitrary machine numbers the iterations naturally merge 
into terminal cycles or fixed points. However, extensive checks have shown that there 
appear to be very few distinct terminal cycles corresponding to a given machine 
and programming mode; for instance on a 12 digit device (HP-9100) we have so far 
discovered only three terminal cycles. By mapping out the de Bruijn diagrams [ 13, 141 
corresponding to the complete set of iterations or orbits which can be generated on a 
particular machine it appears that the terminal cycles are isolated in a topological 
sense (Section 6). 

The scattered results available in the literature indicate that the empirical construc- 
tion of functions whose iterates simulate chaotic behavior is not likely to lead to 
practical algorithms for generating pseudo-random sequences [15]. However, the 
experience gained with the CebySev mixing suggests that iterative processes for which 
there is an a priori theoretical assurance of pseudo-random behavior may be promising 
candidates for computer simulation. An extensive inventory of such processes 
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ranging from Anosov flows [16], to broken linear (bakers’) transformations [17], 
and billiard collisions in convex domains [18] has been studied in connection with 
general ergodic problems [19], However, it remains to be seen whether any of these 
processes can be approximated on computers with a statistical fidelity matching the 
CebySev iterations. In Section 7 we consider some general mathematical constraints 
on the prospects for the success of this program based on the theorems of Sarkovskii 
[20] and Brolin [21]. For general functional iterates, such as the CebySev mixing, 
which cannot be embedded in flows, we show that the corresponding physical 
processes, e.g., product detection, cannot be described in terms of Hamiltonians. 

2. RANDOMNESS CRITERIA 

It is convenient to begin with a brief recapitulation of various randomness criteria. 
A complementary summary oriented towards practical computations may be found 
in Knuth [22]; the deeper logical and philosophical aspects of the subject have been 
discussed by Carnap [23]. 

(i) Equidistribution. Strings of random digits can in principle be generated by 
repeated independent drawings from the population 0, 1,2,..., 9; where the probability 
of selecting any particular digit is one-tenth [8]. A deterministic computer simulation 
of this process corresponds to generating sequences {x,} which in first approximation 
will mimic the equidistribution of the digits. Formally this means that if the elements 
x~, are drawn from the interval [0, Q), then 

lim Q 2 1 = b - a, 
N+a N 

a<x,<b 
l<n<N 

(2.1) 

where 0 < a < b ,< Q [4]. The simplest illustration of equidistribution is the approxi- 
mate equality of the number of heads and tails obtained in consecutive tosses of an 
“ideal” coin. Analogous behavior is expected for other random sequences of dicho- 
tomic variables [14]. 

(ii) Normality. Runs of consecutive heads and tails generated by tossing an 
ideal coin are not only equidistributed but presumably occur in definite proportions, 
i.e., about half the runs are expected to have length 1, one-fourth have length 2, one- 
eight have length 3, and so forth. A mathematical realization of this sort of apportion- 
ment is a normal number, that is a number in whose decimal expansion all blocks of 
digits of the same length occur with equal frequency. In particular if x = 0.x,x,x, .... 
represents an infinite decimal expressed to base r, X,, denotes the block of digits 
Xl.YZ ... x, ) B,; a given block b,b, ... b6 , and N(B,, X,) designates the number of 
occurrences of the block B, in X, , then the condition for the normality of x to the 
base r is [5] 

!f+f II-lN(B, , X,L) = +‘. for all B7: , k = 1, 2,... . 0.2) 
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This constraint of “proportional representation” can also be expressed in terms of 
equipartition criteria [4]. A theorem of Bore1 [5] asserts that almost all real numbers 
(in the sense of Lebesgue measure) are normal to every base, but in practise it is 
exceedingly difficult to determine whether or not any particular irrational number is 
normal. For example it is not known whether e or rr are normal to any base. Further- 
more a number which is known to be normal may not have its digits arranged random- 
ly. Champernowne’s number [5] 

0.12345678910111213.... (2.3) 

is normal, transcendental, and obviously non-random. 

(iii) Auto-correlation. Patterns of order such as those exhibited by (2.3) can 
often be detected by comparing the sequence {x,} and its shifts {x,,,}. A formal 
measure of the degree of order in the sequence then is given by the autocorrelation 
function 

C(T) = ii% N-l f XnXn+7 ) 7 = 0, 1, 2,...; (2.4a) 
n=l 

provided that the limit exists. In the case of random or “white noise” sequences it is 
intuitively obvious that the correlation function ought to approximate the behavior of 
a Kronecker delta, e.g., 

C(T) = const. x a,, , where a,, = 
I 
1, 7=0 
0, 7 # 0. 

(2.4b) 

Indeed for some mathematically “white” sequences it is possible to derive the Kro- 
necker form (2.4b) by rigorous means [4]. 

(iv) Ergodicity. The essence of the ergodic hypothesis regarding the “random” 
behavior of general systems is that there is a direct proportionality between the time 
that a system spends in a certain region of phase space and the volume of this region. 
Clearly the ergodic hypothesis is a physical counterpart of the normality condition (ii), 
cf. [24]. If we identify “time spent” with relative frequency of occurrence and “volume” 
with a measure of content such as probability measure then ergodicity can be linked 
to the computer simulation of random processes by means of the ergodic theorem. It 
is convenient to recall first that ergodicity and metric transitivity are connected by 
the following definitions: 

(iv-a) metric transitivity and ergodicity. Let P be a probability measure 
defined on a u-field of subsets of a set Q. Letfbe a (not necessarily invertible) function, 
which maps Q into itself. Thenfis ergodic or metrically transitive on G with respect to 
P if for any P-measurable subset S of D the conditionf-lS = S implies that either 
P(S) = 0 or P(S) = 1 [24, 251. Heref-l is the inverse image of S underf, i.e., the set 
of all points x such thatf(x) is in S, andf is measure preserving P(.f-lS) = P(S). 
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The practical embodiment of these abstractions is furnished by the 

(iv-b) ergodic theorem [19, 24, 25, 261. If f is ergodic on Q with respect to P, 
then there is a subset Sz’ of Q with P(P) = 1, such that 

n-1 

!j; n-l c Xsvw = P(S) m=o 
for all S E Sz and all x E S’. As usual xs denotes the characteristic function 

x45) = 0, 1; Es; 

= 1, <ES. 

(2.5a) 

(2.5b) 

Obviously the left hand side of (2.5a) represents the average number of images of x, 
i.e., the iterates f “[xl, which fall in the set S, and the theorem asserts that the relative 
frequency of this occurrence is in fact proportional to the measure of S. Finally the 
law of large numbers combined with (2.5a) leads to the interpretation that P(S) is 
the probability that a point selected at random lies in S [23, 26, 271. 

(v) Mixing. Metric transitivity implies that the successive iterations of f 
applied to x E Q correspond to a stirring or randomization of the elements of LJ. This 
interpretation can be made explicit by noting that the object f-“LS, n &-constructed 
for any two P-measurable subsets S, and S, of G-represents the miscibility of the 
two subsets after m stirrings, i.e., iterations. Indeed if the mapping f is ergodic then 
(2.5a) can be generalized in the form 

n-1 

lii n-1 c P(ps, f-l S,) = P(S,) P(S,), 
WL=O 

(2.6) 

and this guarantees that on the average the sets S, and S, are completely mingled by 
the iteration of the mapping f [24]. Of course theorem (2.6) does not preclude the 
sporadic recurrence of patterns of order: For instance in communications codes it is 
possible to conceal bursts of “signal” in noise, and there are physical systems such as 
electron spins which can show a recrudescence of order in virtue of spin “echo.” See 
also [65]. 

It is possible to suppress these kinds of departure from random behavior by 
replacing the average mingling implied by ergodicity (2.6) by the much stronger 
asymptotic mixing condition [28] 

vi% P(f-fSl n S,) = P(S,) P(S,). (2.7) 

A function f satisfying (2.7) is said to be mixing on the set Sz with respect to the 
measure P. Clearly if f is mixing it is also ergodic, cf. (4.4) et seq. One rigorous 
consequence of (2.7) is that mixing will spread initially small sets throughout Q [ I1 1. 
This randomization, which is also amenable to computer simulation, is irreversible 
in the sense that with probability 1 the diffused sets will never contract. 
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(vi) Cross-correlation. When several pseudo-random number generators are 
run in parallel in a computer program it is possible that latent stochastic dependences 
among the generators may introduce spurious features. The simplest means for detect- 
ing such dependences is the covariance or cross-correlation: Specifically if X1 and X, 
are random variables with expectation values 

<Xi> = jj dx, dx, xi& > xz), i = 1,2; (2.8a) 

where g is the normalized joint probability density, then the cross-correlation between 
X, and A’, is given by [27] 

Gqx, ) X,) = 1s 4 dx, (~1 - W,>)(x, - GW) dx, 3 4. (2.8b) 

In case A’, and X, are independent the probability density may be factored into one 
dimensional distributions, e.g., 

&I 3 x2) = W,) Mx,), 

and the cross-correlation vanishes. However, the converse may fail and this is the 
essential hazard in identifying stochastic dependences. One counter-example is 
furnished by the pseudo-random vector (A’, , A’,) distributed uniformly on the circum- 
ference of the unit circle: in this case e(X, , X,) = 0 despite the fact that X1 and X, 
are not independent [27]. When regression criteria such as (2.8b) fail, more powerful 
tests utilizing copulas are available for detecting the presence of stochastic dependences 
[29-311; cf. Section 3.4. 

(vii) Statistical Stability. If {x,} is a random sequence it is possible to introduce 
patterns of order by modifying the individual terms by additions or deletions. However, 
if these perturbations are sufficiently “weak” then it is intuitively plausible that the 
random character of the sequence should be unaffected. Under suitable restrictions, 
stability results of this kind can be established rigorously [32]. In the particular case of 
mixing transformations the meaning of “weak perturbation” can be made more 
precise by recalling the analogy with continuously stirred reaction vessels of the type 
used in chemical engineering applications: In these devices the rate at which the 
constituents are mixed is adjusted to exceed the rate at which at which new constitu- 
ents are added; the homogenization of the effluent is thereby continuously maintained. 
In computer simulations of mixing, the homogenization or rate of randomization 
is scaled by the Kolmogorov entropy, and the inflow of new constituents corresponds 
to the perturbations which are introduced by computer noise. Statistical stability in 
this instance has the practical consequence that the random character of the CebySev 
mixing simulations can actually be sustained on sufficiently large machines, cf. 
Section 5. 
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3. COMPUTER SIMULATION OF CEBYSEV MIXING 

3.1 Single Sequences of Pseudo-Random Numbers 

The second degree CebySev polynomial 

f(x) = x2 - 2 (3.1) 

maps the interval [-2, 21 onto itself. Simple iteration leads to the quartic mapping 

,f[f(x)] = f”(x) = x4 - 4x + 2. (3.2) 

The nth order iterate off can also be expressed in the closed form 

f”(x) = 2 cos[2” cos-‘(x/2)], n > 1. (3.3) 

According to the basic theorem of Adler and Rivlin, cf. (4.1 a), the sequence of iterates 
(f(x)} is mixing for almost all choices of the initial “seed” x E [-2, 21. Since mixing 
implies ergodicity both of the randomness criteria (iv) and (v) of Section 2 are satisfied. 
Furthermore it is easy to verify that the orthogonality of the CebySev polynomials 
implies that the autocorrelation function for {f”(x)} has the Kronecker form (2.4b) 
associated with white noise. It will shortly appear that the sequences {f”(x)} also 
satisfy the other randomness criteria discussed in Section 2. 

For practical purposes it is sometimes convenient to shift the mixing region from 
[-2, 21 to the general interval [a, b] where a < b. In this case (3.1) is replaced by 

f(3) = a + (2.5 - a - b)2/(b - a), 2 E [a, b]. (3.4) 

However, the mixing behavior does not occur for arbitrary quadratics. The possi- 
bilities are severely constrained by the following result announced in 2341. 

LEMMA. No quadratic function that maps the unit interval onto itself and has a 
minimum can be measure preserving, a fortiori mixing, with respect to any absolutely 
continuous measure if its minimum pointfalls outside the closed interval [0.5,0.647798...]. 
A similar statement holds for quadratic,functions that have maxima. The function whose 
minimum occurs at 0.5 is the C’ebySev polynomial 

f(S) = (2x” - 1)2, 5 E [O, 11. (3.5) 

The behavior of the CebySev mixing sequence (f”(x)} can be illustrated by con- 
sidering the first few terms which arise from the initial “seed” VT - 3 ~0.1416, viz., 

0.1416, -1.9799, 1.9202, 1.6872, 0.8466, -1.2832, -0.3534. (3.6) 

.581/32/2-3 
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These numbers seem to imitate an erratic wandering. Computer experiments show 
that such wandering sequences are obtained for practically all choices of the initial 
seed x E [-2, 21; compare Table II(a). The theoretical safeguard preventing collapse 
into fixed points or cyclic orbits is provided by the following 

THEOREM [12]. Let n be an integer n >, 1. Then the set of cyclic points 

f”(x) = x, x E [-2, 21 (3.7a) 

of the C?ebySev polynomials is dense but countably infinite; consequently of measure 
zero. SpeciJically if 

fY&J = &n > m = O,..., 2” - 1; n > 2; (3.7b) 

then the fixed points are given by 

2 [ 
2rnn cm 2” 1 1 ’ m even; _ 

x, = 
2 

2m7r 
cos 

[ 2” f 1 1 ’ m odd. 
(3.7c) 

Practical experience indicates that the computer iterations will collapse into the 
repulsive fixed point +2 at step n if at step n - 2 the sequence wanders sufficiently 
close to zero; this will occur if /f”-2(~)I < 6, and a2 vanishes within the accuracy 
of the machine arithmetic. The probability for such a collapse can be inferred from 
the distribution of the values of {f”(x)}. Specifically since the CebySev mixing is 
invariant with respect to the measure, cf. (4.la), 

PC(S) = f .r, (4 :;2,1,2 ’ s c [-2, 21; (3.8) 

it is clear that after A’- iterations the inequality 

will on the average be satisfied I times where 

1(x,, xv ; N) = -$ {sin-‘(xU/2) - sin-l(xL/2)}. (3.9b) 

In other words the sequence {fW(x)> is likely to fall into the interval [--6, 61 at least 
once when 

I(-& 6; ./v) ‘v /a/?7 > 1; 6 Q 1. (3.10) 
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If the simulations are performed on a machine that effectively operates with q digits 
to the base 10 then the accessible universe of numbers comprised in [-2, 21 consists of 
NU distinct elements where 

N, -- 4 ,,: IO”-r + 1. (3.lla) 

The condition that S2 vanishes within the accuracy of the machine arithmetic then is 
equivalent to the bound 

6 7 1O-(rl-l)/2 (3.1 lb) 

Finally if we anticipate the estimate that the average number of iterations is scaled 
by H 7 Ny2, cf. (3.21c), it becomes apparent that the “$2 collapse” criterion 
(3.10) is marginally violated, i.e., 

Z(--6, 6; JV) 2 N1:26/n - 217~ & 1. (3.1 lc) 

Practical experience confirms that when q 7 10 the mixing simulations hardly ever 
terminate on the +2 fixed point, cf. Tables II(a), II(b) and Table VI. 

The distribution function (3.9b) furnishes a good statistical check on whether the 
computer-generated values of {f”(x)} conform to the theoretical CebySev measure 
(3.8). One drawback for practical applications is that this distribution is not flat. In 
principle it is of course easy to adjust the shape: for instance the sequence (4/n) 
{cos-~[~~(z)/~]} - 2 where z = 2 COS[(~/~)(X + 2)], is uniformly distributed over 
[-2, 21 and satisfies the equidistribution criterion (i) of Section 2; cf. [35]. A cruder 
flattening that is more economical in programming time can be achieved by eliding 
the first few digits of each term in the sequence {f”(x)}: this corresponds to using a 
linear approximation for cos-l(z + 5) when 1 !: / < 1 z + 1. 

Another statistical index which can easily be derived from the underlying CebySev 
measure (3.8) is the average agitation associated with the mixing. It is plausible to 
identify this as the average fluctuation of the successive terms of {f”)}, i.e., 

(3.12a) 

where the notation indicates that the average is taken over x E [ -2, 21. By specializing 
(4.5) this limit can be derived from a simple quadrature, 

+2 
& = 

s., 
(gz ' z2 - z - 2 i = x!t 'v I.653 986 .,. . 

n-(4 - zy 7r 
(3.12b) 

The agitation for the 7 terms displayed in (3.6) happens to be 1.69; longer simulation 
runs of (f”(x)} lead to the exact result (3.12b) within the latitude of statistical error; 
cf. Table VIII. 
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3.2 Computer Simulations: Growth of Round-Of Errors 

The individual terms of the CebySev mixing sequence (f”(x)} can in principle be 
computed by starting with an initial “seed” x,, and iterating the simple quadratic 

f'"'~yx,) = .xnil = X,&2 - 2. (3.13) 

If we use a binary digital machine which carries out arithmetical operations accurately 
in the first b bits or binary places these steps can be idealized as follows: the machine 
value X0 of the initial seed is obtained from 

X0 = w(x,) T$ Pb I x0 II, (3.14a) 

and the iteration (3.13) can be approximated by the operations 

x n+l = 4 [2bX,2] - 2. (3.14b) 

As usual in these expressions [z] denotes the largest integer contained in the (non- 
negative) number z, and sgn(z) is the sign of z. Of course the precise realization of 
(3.14a, b) depends upon the nature of the microprograms of the computer as well as 
the way in which the CebySev iteration is programmed. In any event the distinction 
between (3.13) and (3.14b) will lead to a progressive divergence between the exact and 
computed values of (f”(x)}. Let us first introduce the increments dx, ~0(2-~) 
which correspond to the round-off when (3.14b) is rewritten in the form 

Then the divergence 

x n+l = xn2 - 2 + 4+1 . (3.15) 

D, =I x, - X, (3.16a) 

will evolve according to the difference relation 

D n+1 = (x?L2 - X,") - Ax,+1 = 2xPn - (Dn2 + &+I). (3.16b) 

In view of the initial condition Do = x0 - X0 - 2-b < 1, it is easy to check that 
(3.16b) yields numbers D, that tend to increase exponentially with n. After a few 
iterations the stepwise truncation error can be neglected relative to the cumulative 
truncations. The magnitude of the average deviation can then be estimated from 

(I D,,, I> cs (I 2xnDn - on2 I>, 
- X x, IX Dn Ii for (1 D, 1) < (1 x, I;:\ = 4177; (3.16~) 
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and this leads to the simple proportionality 

(I Dn,, i> -$ (i D, lb. (3.16d) 

where the averages are carried out over x E [-2, 21. Eventually the growth of the 
deviation is limited by the bound 1 D, 1 < 4. The number of machine iterations 
required to amplify the deviations from the “noise” level D,, - 2.” to Dnu - 1 is then 
given by 

nd - b(3 - log,n)-l - 0.74 b. (3.16e) 

Clearly this index corresponds to the threshold beyond which the computer generated 
iterates {X-J and the exact CebySev mixing sequences {x,} lose all numerical resem- 
blance. These features have been confirmed with a variety of machine experiments. 

The practical relevance of the computer iterations then hinges on the basic c.uperimental 
observation that all the statistical properties of the exact CebySev mixing sequences 
{x,} are simulatedfaithfully by the machine generated sequences {Xn} eve/f for valurs oj’n 
greatly in excess qf the divergence threshold nd (3.16e)! A concise illustration of the 
agreement between the observed and expected values of the frequency distribution 1 
(3.9b) for a typical run with JV = IO5 and nd - 26 is given on Table I. If there is a 

TABLE I 

Experimental and Theoretical Frequency Distributions for CebySev Mixing Transformations” 

Interval -2.0 -1.5 -1.5 -1.0 -1.0 -0.5 -0.5 0 0 0.5 0.5 1.0 I.0 1.5 1.5 2.0 

P (theory) 23 005 10 328 8623 8043 8043 8623 10 328 23 005 
I (exp.) 22 912 10 249 8510 8007 8128 8515 IO 288 23 391 

nStarting point: x0 = 7r- 3; arithmetic: 15 decimal digits; computer: IBM 360,!195; number of 
iterations: lo”. 

h See (3.9b). 

good correlation between the experimental frequency distribution of the {,Y,J and the 
underlying CebySev measure (3.8) it is reasonable to anticipate that all the other 
statistical indices, such as the agitation (3.12a) and the auto-correlation (2.4a), will 
simulate the behavior of the exact mixing sequences {f”(x)]. These points have also 
been verified with computer experiments. 

We have already indicated in Section 2(vii) that the statistical correspondence 
between the exact sequences (x,] and the machine generated iterates {X,J for II ) 11,~ 
is a manifestation of the stability of the mixing randomization. This stability can be 
destroyed by inserting large and structured increments y, between successive iterations 
of (3.14b): obviously the modified sequences 
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where 1 JI 1 N / P, / need not be pseudo-random. In practice it is easy to perturb the 
mixing by varying the precision of the computer arithmetic. This leads to the practical 
constraint that machines operating with less than 25 bit or 8 decimal place arithmetic 
tend to throttle the randomization. In Section 5 we will discuss this problem in further 
detail and show that larger capacity devices can successfully simulate the CebyHev 
mixing at levels close to the theoretical optimum. 

3.3 Computer Simulations: Free Running and Terminal Cycles 

The quantitative divergence between the computer generated iterates (XJ and the 
exact CebySev mixing sequences {x,> not only reflects the cumulative truncation 
errors of the machine arithmetic but on a deeper level is connected with the asymptotic 
cycling of iterative processes on finite state devices. Specifically for any mapping 
JY(xi) + Xj of a finite set x1 , x2 ,..., x,,, onto itself the sequences of iterated mappings 

JiqXi), ~“(XJ )...) dPf(xJ )...) dvL(xJ )...) Jtv”(Xi) (3.17) 

must contain at least two identical elements, say JZn~(xi) and JPL(xJ, whenever 
m > N, irrespective of the choice of the initial “seed” xi (pigeonhole principle [5]). 
This implies that (3.17) is actually comprised of a “free-running” subsequence 
JY(Xi),....~ 4PLf-1(~i) containing no repetitions, and a contiguous subsequence -4P~(xi),.. ., 
JPL(x;) which constitutes a terminal loop with nL. - nf distinct elements. In cases 
where the sequence of iterates {AP(xJ) has a random character it is possible to obtain 
quantitative estimates for the magnitudes of the free running index nf and the loop 
index nL by means of simple combinatorial arguments. The essential idea is to consider 
that the sequence (3.17) is generated by random selections with replacement from a 
sample of NLT distinct elements, cf. (3.1 la): We must then determine how many 
choices have to be made on the average before at least one element is encountered 
twice. This is a simple variant of the “birthday” problem [27]. 

If we index the selections by i, and indicate the probability for a repetition by 
P(i, N,), then obviously 

P(1, NC,) = 0; (3.18a) 

and the non-void cases can be built up according to the pattern 

and 

P(2, NU) = N;‘, 

P(3, Nu) = P(2, Nu) $- & [l - P(2, Nu)]. 

One can easily check that the general recursion is given by 

P(i + 1, N,) = P(i, NU) -1. i, [I ~ P(i, Nu)]; (3.19a) 

(3.18b) 

(3.18~) 



RANDOM PROCESSES AND EEBYSEV MIXING 181 

and consequently 

1 - P(i + 1, N,) = h [l - (j/Nu)l = &;p- q . 
j=l 

(3.19b) 

The object on the left hand side of (3.19b) is the probability that after i + 1 selections 
one has not encountered a repetition. As usual it is convenient to parameterize this 
expression by an exponential, i.e., 

e-n = 1 - P(i + 1, Nu), (3.20) 

and then to evaluate the probabilities with the help of the auxiliary simplifications 
Nc, > i and NU > 1, which are satisfied in practise. Applying Stirling’s approxima- 
tion to the gamma functions in (3.19b) we then obtain 

h ‘v i + (i - N,)ln[N,/(N,, - i)], (3.2la) 

and to leading order 

x N $ + B(i3/Nu2). 
CJ 

(3.21b) 

So for example at the 50% level, i.e., c-~ - l/2, a pseudo-random (albeit deterministic) 
sequence of the type indicated in (3.17) will merge into a terminal loop whenever the 
index n, reaches the range 

Since the CebySev iterates are not uniformly distributed over the accessible numbers in 
the interval [-2, 21, cf. (3.9) and (3.1 la), the coefficient in (3.21~) is actually somewhat 
too large: these features are in agreement with the trends of the experimental results, 
cf. Tables II(a) and II(b). 

A slight extension of these arguments also leads to an order of magnitude estimate 
for the free running index nf . In this case we consider a universe of NU distinct 
elements which contains a distinguishable subset of nL - n, objects-free running then 
obviously corresponds to sampling NU at random until one encounters one of the 
n, - nf objects lying on the terminal loop. Since the probability of selecting a member 
of the loop is approximately (nL - nf)/NLr, the number of iterations required to 
reach the loop is of the order of the reciprocal NU/(nL - nf). If we consider the 
option that the loop length does not exceed the interval of free running, i.e., nL - n, < 
11~ , then evidently 

Nu N’:2; n,N-w n L - nf 
(3.22) 

and this estimate also turns out to be in good correspondence with all the experimental 
results, cf. Table II(b). One can easily check that the assumption that the loop length 
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greatly exceeds the interval of free running, i.e., nL - n, > nf, is inconsistent with 
the prior estimate (3.21~). Similarly one can show that the existence of terminal 
loops with very few elements, PZ~ - n, N o(NY’), is highly improbable: indeed no 
trace of such loops has been found in many trials involving machines with capacities 
satisfying the bound NV 7 lo*, cf. Section 6. 

It is interesting to follow these trends on a large capacity machine, e.g., a Univac 
1108 operating in double precision: In this instance 60 bits are available and therefore 
the exact CebySev mixing sequences {x,1, cf. (3.13) and the machine generated 

TABLE II(a) 

Computer Simulations of CebySev Mixing on an HP-9100: 12 Significant Decimal Numbers” 

1. x-3 343 x 103 95,447 
2. 42 361 x lo3 95,447 
3. e-l 318 x lo3 95,447 
4. 9 - 306 277 x 10s 95,447 
5. 0.842 268 953 196 204 x 103 95,447 
6. 1.280 799 970 80 206 x 1Oa 95,447 
7. 1.180 505 431 39 296 x IO3 95,447 
8. 1.255 073 742 11 209 x lo3 95,447 
9. 0.449 352 494 752 276 x IO3 95,447 

10. 0.054 997 654 6405 155 x 103 95,447 
11. 1.956 541 430 01 232 x IO3 95,447 
12. 1.863 332 537 98 180 x lo3 95,447 
13. 1.166 449 883 52 334 x 10s 95,447 
14. 0.918 820 097 328 132 x lo3 95,447 
1.5. 0.835 869 910 785 309 x 103 95,447 
16. 1.950 237 174 69 178 x lo3 95,447 
17. 0.763 877 929 030 387 x lo3 95,447 
18. 0.691 345 197 426 300 x 103 95,447 
19. 1.644 424 334 36 186 x 10s 95,447 
20. 0.399 110 461 937 189 x lo3 95,447 
21. 1.754 673 704 92 333 x 103 95,447 
22. d - 9 299 x IO3 104,694 
23. 1.009 732 533 76 82 x lo3 104,694 
24. 0.989 320 505 142 94 x 103 104,694 
25. 1.547 445 266 95 121 x 103 104,694 
26. 1.085 062 746 99 147 x 103 104,694 
27. 1.288 397 343 65 120 x 103 104,694 
28. 1.952 359 515 65 77 x 10s 104,694 
29. 0.378 897 599 758 210 x 103 104,694 
30. (VT - 1)2 72 x IO3 39,965 
31. 1.045 816 019 14 94 x I03 39,965 
32. 1.555 555 555 55 13,597 +2 (fixed point) 

Initial number 
Approximate interval of free running 

nf (3.22) 
Length of terminal loop 

fiL - nf 

a Approximate decimal equivalent including guard digit and discounting roundoff errors: NU N 
4 x IO”, cf. (3.11a). 
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TABLE II(b) 

Statistical Summary of Data in Table II(a): Comparison With Combinatorial Estimates 

Percentage of 
initial numbers Average interval Theoretical 

Terminal loop merging into of free running <n,> + nL -- n, estimate nL ~ 4 
nL ~ n, terminal loop <nf> - (nL> of c\tzL) (3.21~) h> 

-- 

95,447 66 % 257,000 352,000 520,000 0.37 
104,694 25 % 144,000 249,000 520,OOa 0.73 
39,965 6% 83,000 123,000 520,000 0.48 

$2 (fixed point) 3% 13,597 - cf. (3.llc) 

sequences {Xll}, cf. (3.14b), should agree quantitatively until the number of iterations 
approaches the divergence index nd - 50, cf. (3.16e); in practical trials it was in fact 
observed that the discrepancy D, (3.16a) was amplified to the order of unity after 
45-50 iterations. Beyond this point the machine generated sequences {Xn} continue 
to simulate all the statistical properties of the exact CebySev mixing-for instance the 
frequency distribution (3.9b), the Kronecker auto-correlation (2.4b), and the agitation 
(3.12b). In the interval 0 ,( n < n, - log, cf. (3.1 la) and (3.22), all elements of the 
sequence {Xn} should be distinct: for example with 7~ - 3 as the initial seed, the interval 
of free running was found to be approximately 2.8 x 108; the corresponding terminal 
loop {X,], n, < n < nL , had a length nL - nf = 48, 424, 947. This result is in fair 
accord with the estimate nL - nf 7 O(Nz’) implied by (3.22). Tracing the behavior of 
the r - 3 iterations on the 1108 consumed nearly 1 hour of CPU time; most of the 
other numerical experiments were therefore carried out under less expensive condi- 
tions. Some representative results are summarized in Tables II(a) and 11(b). 

As indicated in the first column of Table II(a) we found it convenient to use a 
number of standard “seeds” such as r - 3, e - 1, and 1.555 555 . . . for running the 
CebySev mixing simulations on a variety of computers; the other 25 twelve digit 
seeds were compiled from a table of random numbers. All runs were carried out at 
least twice to eliminate power line or internal “glitches,” and precautions against 
non-commutative operations with guard digits were incorporated in the programs 
[36]. The terminal loops were identified with the help of the apriori estimate nL. N Ng2 
(3.21~): We simply allowed the computer iterations to run past a larger index nz 7 
2Ng2, and then programmed the machines to look for a repeating sequence 

The minimum value of i obviously correspond to the loop length nL. - n, , and the 
five-fold redundancy implied by (3.23) insures that the recognition of the loop is 
“glitch” proof. Of course this simple recipe is not adequate to pinpoint precisely 
where the iterations originating from a particular seed x0 first enter the terminal 
loops. However, once the loop has been identified the first point of entry x,+~) and 
the corresponding index nf(xO) can be located by a variety of iterative methods. The 
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imprecision in the values of nf listed in column 2 of Table II(a) reflects the limits to 
which we pushed these methods. In any event it is clear that the observed and estimated 
values of the loop index nL are in good agreement. As indicated previously the estimate 
(3.21~) is actually somewhat too large because of the non-uniform distribution of the 
CebySev iterates. The tabulations also confirm that the loop lengths tend to be smaller 
than the intervals of free running, i.e., (IZ~ - nl)/nr < I. Finally it is apparent that the 
interval of free running is roughly scaled by NV2 as indicated by (3.22). Further 
results from machine trials with CebySev simulations are summarized in Tables V-VII 
of Section 5 (Variable Precision Routines), and Table VIII of Section 6 (Terminal 
Cycles). 

Although detailed comparisons of the relative merits of standard multiplicative 
congruence methods and CebySev iterations as pseudo-random number generators 
are beyond the scope of the present work it is interesting to spot check the trends. 
For instance one procedure recommended for the SR-52 programmable calculator 
(10 digits $ 3 guard digits) is to multiply an arbitrary initial seed by 7g, elide the 
first eight digits of the product, and use the remaining five digits as the seed for the next 
multiplication by 7”: the sequence of five digit numbers generated by these means is 
supposed to be pseudo-random. However as indicated on Table III this process 
terminates on three short loops (nL - IZ~ = 42 I ; 156; 77) after very brief intervals of 
free running. Specifically with n - 3 as the initial seed the “7s” congruence method 
leads to a loop of length 77 after approximately 76 iterations, whereas on the same 
machine the CebySev mixing simulations merge into a loop of length 564,609 (NY” - 
2 >: 106) after 5 IO6 iterations. This striking disparity indicates that the practical 
performance of some standard random number generators may fall far short of the 
theoretical estimates [37]. 

3.4 Multiple Sequences of Pseudo-Random Numbers 

If the CebySev iterations are started at two initial seeds, x,, and y, , the ensuing 
mixing sequences {x,} and {y,> behave like independent random variables for almost 
all choices of x,, and y,, , cf. (4.5). As a consequence both the cross-correlation (2.8a) 
as well as the copula measures of dependence [30, 311 vanish identically. Since the 
Cartesian squares of ergodic transformations need not be ergodic [12, 251 it is clear 
that the transition from the weaker mingling condition (2.6) to mixing (2.7) is crucial 
for generating multiple sequences of pseudo-random numbers. In practical trials it 
turns out to be convenient to check on the suppression of stochastic dependences 
by monitoring the dispersive properties of the machine generated iterates. Specifically 
this implies that for almost all choices of x,, and y0 the mixing process disperses the 
values of the iterates {x~} and {yn} so thoroughly that eventually their relative distribu- 
tions become independent of the starting points. For instance the probability density 
that the difference between two iterates 1(x,} - { ~~}l,+~ falls between the values z 
and z + dz where 0 < z < 4 is given by [12] 

(3.24) 
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TABLE III 

Free Running and Terminal Loops for the “7’” Random Number Generator: 
SR-52 (13 digits) 

Initial seed Length of terminal loop 
Upper bound for interval of 

free running” 

0.01 421 474 
0.02 421 478 
0.03 421 895 
0.04 421 474 
0.05 421 53 
0.06 1.56 192 
0.07 421 474 
0.08 156 192 
0.09 421 474 
0.10 421 895 
0.11 156 348 
0.12 421 474 
0.13 421 474 
0.14 156 192 
0.15 421 474 
0.16 421 474 
0.17 156 348 
0.18 421 474 
0.19 421 53 
0.20 421 474 
0.21 421 474 
0.22 421 53 
0.23 421 53 
0.24 421 474 
0.25 421 474 
0.26 421 474 
0.27 421 474 

0.52 421 579 
0.14159 77 76 
0.15159 421 579 
0.16159 156 220 
0.17159 421 579 
0.18159 421 579 
0.15574 421 578 
0.16989 77 307 
0.18404 421 579 
0.19819 77 153 

4 Number of iterations required for the initial seed xe to encounter the number x3ooo for the fivst 
time. Average value for upper bound of free running -408. 
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where K denotes a complete elliptic integral of the first kind, cf. (4.6). The mean 
distance or asymptotic dispersion of the CebySev mixing on the interval Sz = t-2, 21 
can then be obtained by quadrature [38]: 

=! -‘dz zG(z) = !$ g 1.621 138 . . . . (3.2%) 
0 

The corresponding dispersive behavior of the machine generated iterates may be 
checked by straightforward methods. For example the mean distance can be approxi- 
mated by selecting h-pairs of initial seeds Xoi, yoi, 1 ,( i < h, cf. (3.14a), all equally 
spaced ; / Xoi - joi ~ :z: d ,( 4, and then computing the average distance 

z(n) =- x-1 i 1 x,,i - Yni I 
i=l 

(3.26) 

as a function of the number of iterations, cf. (3.14b). If the machine generated sequen- 
ces properly simulate the behavior of the multiple CebySev iterates, then the statistical 
metric z should exhibit a transition from z(0) = d to z(n) + 16/7? with increasing 
values of n. We have verified this behavior under a variety of conditions, e.g., 200 < 
h < 2000 and 1O-4 < d < 10m2, on a Univac 1108 operating in double precision 
[12, 381. Some of the results are given on Table IV. 

The ergodic nature of the mixing furnishes another simple test: Clearly after a 
sufficient number of iterations-roughly n 7 20 according to Table IV-the mixing 
should obliterate any initial pattern of order in the selection of the seed pairs X,i, joi. 
In fact the frequency distribution of the iterates {Xni}, { jlzi} should approach the 
CebySev density (3.9b) for practically all choices of the initial distributions of Xoi and 
joi. Numerical trials have also confirmed that this memory loss is correctly simulated 
by the machine sequences [38]. 

These statistical indices have a general utility in monitoring the behavior of multiple 
sequences of random numbers. The basic idea is that if Q is any metric space endowed 
with a probability measure and ./Z is a measure preserving transformation on Q, 
then for any z > 0 and almost all pairs of points (x, y) in the Cartesian product 
Sz x 0, there exists a distribution function F,,,(z)-the probabilistic metric-such 
that the fraction of times the distance between the points .L”(x) and &‘“( JI) is less 
than z convergences to I&(z) as n ---f co [39]. As a consequence arbitrary mixing 
transformations may be characterized by their asymptotic dispersion. An illustrative 
variant of our preceding results is the function, 

c, = ; {cos-1[.fnw/21} - 2, z = 2 cos [T (x + 24 
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which maps the interval [-2, 21 onto itself, mixes with respect to Lebesgue measure; 
and leads to a uniform distribution of the iterates {i,}. In this instance the probabilistic 
metric and asymptotic dispersion corresponding to (3.24) and (3.25b) are given by [12] 

and 
e(z) = (4 - z)/S, O<z<4; (3.28a) 

D ~ ccl ~ I’ 
4 dz zC(z) = 413. (3.28b) 

0 

The entries in Table IV describe the initial growth of the statistical distance z(n) as 
well as its ultimate stabilization in the vicinity of 16/n2. Since the rate of growth is 
directly related to the dispersive nature of the mixing iterations and also reflects the 
underlying Kolmogorov entropy, cf. (4.12), it is useful to derive its evolution. We 
note first that the seed pairs xoi and yoi may be expressed in the symmetric form 

x0 i = cos(& + &2), yoi = cos(& - f$/2) (3.29) 

where the auxiliary constraint 1 xoi - yog / < 4 requires that C# be a very small offset 
angle. The mean square of the statistical distance then is given by 

(zV)> = (I xvi - Yni 12hi”[0,*l 3 (3.30a) 

or, substituting from (3.3) and (3.13) 

(z”(n)> = ; Iov d6’ {cos[2”(0 + d/2)] - cos[2”(8 - &2)]f”. (3.30b) 

The dependence on the offset angle $ can be factored out of the integral, and conse- 
quently 

(Z”(n)) = 8 (I - &;) sin2[2+1+]. (3.3Oc) 

From this expression it is apparent that the initial rate of growth of the r.m.s. distance 
depends exponentially on n, viz., 

[(z2(n))]l’2 - 2n+1/55, when 1 29 1 < 1. (3.30d) 

A slight variant of this argument for the mth order CebySev polynomial (m > 2) 
leads to the estimate 

[(Zm2(n))]‘/2 - mnmi1/2$, i rnn+lj2yS 1 < 1. (3.30e) 

We will eventually link this result with the Kolmogorov entropy, cf. Section 4. 
The essential implication of these estimates for the machine simulations of mixing is 
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that the behavior of the computed values of the statistical distance z(n) does in fact 
agree with the theoretical predictions (Table IV). However, if we recall that the growth 
of the computing errors is also scaled by an exponential dependence on IZ, cf. (3.16d) 

(I Dn I> - @/7?(l Do I>, (3.31) 

it becomes clear that there must be some practical constraints on the machine capaci- 
ties so that the mixing simulations can be sustained. In particular the double precision 
routines employed for constructing Table IV require 50 iterations to obliterate the 
accuracy of the computations, cf. (3.16e), whereas the transition to a “steady-state” 
mixed regime requires only about 20 iterations. It is plausible that the randomization 
of the mixing simulations is statistically stabilized, by the mechanism indicated in 
Section 2(vii), precisely because of this disparity [70]. Of course with a finer mesh of 

- i initial seed pairs, i.e., j x0 - Joi I = d < 10e4, more iterations are required to reach the 
asymptotic mixed state (z( co) > - 16/n*; and with a smaller computer the dominance 
of the roundoff errors sets in after fewer iterations. These opposing trends lead to a 
practical cross-over point where the dispersion of the mixing iterations tends to be 
throttled. A detailed discussion of mixing with variable precision routines is given in 
Section 5. 

4. CEBYSEV MIXING THEOREMS 

All the numerical evidence we have obtained up to this point indicates that the 
x2 - 2 computer iterations generate long “free running” strings of numbers that 
satisfy all the pseudo-randomness criteria listed in Section 2. We have also spot checked 
the iterative behavior of other surjective quadratic polynomials [34]: In all cases 
differing from (3.4) the computer iterations tend to collapse rapidly into cycles or fixed 
points. Clearly then there is some practical association between the mixing theory and 
the machine simulations despite the fact that the digital networks operate exclusively 
on sets of measure zero whereas it is precisely such sets that are omitted or ignored 
in the mathematical treatment of mixing. Similar results have been inferred from other 
numerical simulations of irregular physical systems-particularly non-linear coupled 
oscillator models in the vicinity of the stochastic transition, e.g., [40, 411. In these 
cases the nature of the demarcation between ordered and disordered behavior has not 
yet been clarified theoretically [42] and extensive efforts have gone into computer 
experiments in order to gain an empirical feeling for the conditions leading to a 
threshold of randomization. The Cebygev mixing problems at least have the conceptual 
advantage that most of the mathematical features concerning randomness have been 
worked out in detail. 

All of the essential results are a consequence of the 

THEOREM (Adler and Rivlin [43]). Let Sz be the interval [-2, 21, and PC(S) the 
probability measure 

PC(S) = s, (4 _d.:,,,,* ’ (4.1 a) 
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for each measurable subset S of Q. Let C, be the modljied cebyiev polynomial defined 
on Sz by 

C,(x) = 2 cos[n co+(x/2)], (principal cos-l). (4.1 b) 

Then the sequence of iterates {C,(x)} is mixing on Sz with respect to the measure P, , 
c$ Section 2(v). 

The Cla’s are closed under composition, with C, 0 C, = C,, . Therefore if we 
specialize to the second order CebySev polynomial 

f(x) = C,(x) = x2 - 2, (4.2a) 

then the nth iterate off is given byf” = CZn , or cf. (3.3) 

f”(x) = 2 cos[2” cos-‘(x/2)]; (4.2b) 

and the sequence {f”(x)} is strongly mixing. The iterative behavior of the general 
quadratic polynomial (on a suitably chosen interval) 

ax2+(b+ l)x+c, a#0 (4.3) 

is completely equivalent to the “standard” CebySev form (4.2a) for all values of the 
coefficients satisfying the condition b2 - 4ac = 9; cf. (3.4), (3.5), and reference [44]. 

Suppose that the inverse image f-l S of the set S is invariant under the mappingf; 
then 

Pc(f-“S n S) = P,(S). (4.4) 

On the other hand the basic mixing condition (2.7) implies PC(S) = PC(S) PC(S), and 
this can only happen if PC(S) is 0 or 1. According to Section 2(iv-a) this coincides 
with metric transitivity and shows that the sequence {f”(x)} is also ergodic [38]. 

The essential link between mixing and the generation of multiple series of uncorre- 
lated random numbers derives from the following 

LEMMA (Product Transformations [ll, 121). If f is mixing with respect to the 
measure P on the set 52, then f tn) is mixing with respect to Pen) on 9” = B x Sz x ... x 
Sz for each positive integer n, where f (VI) denotes the n-fold Cartesian product f x f x 
... x f, and similarly PcnJ is the n-fold Cartesian product of the measure. It follows 
that f fn) is also measure preserving and ergodic on Sn with respect to Pen). 

For n = 2 we therefore have 

n-1 

In; n-l 1 xs,(fl%I) x&“[yl) = P,(S,) P,(SJ 
WL=” 

(4.5) 

for almost all pairs (x, y) and all P,-measurable subsets S, , S, C Q; where as usual 
x, denotes the characteristic function (2.5b). This relation is a generalization of the 
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ergodic theorem (2.5a) and permits us to assert that for almost all (x, JJ) the mixing 
sequences (f”(x)> and {f”(y)} b h e ave like independent random variables-each 
distributed with the density ~~(4 - t2)-liz; cf. (4.la) and (3.9b). 

The asymptotic dispersion of the pairs (x, v) under successive iterations can also be 
described in terms of a probabilistic metric. Specifically if we let D(z) be the set of 
points (x, y) in the square [-2, 21 x [-2, 21 satisfying the condition / x - y j < z, 
then it is possible to establish the existence of the limit [39] 

n-1 
lim n-l 
Iv-,x 1 X~(*)(f”[Xl~ .f”bl) = ~c(z), 

nZ=O 

for almost all pairs (x, y). FC(z) is a distribution function whose value can be inter- 
preted as the probability that the distance between two points chosen independently 
in [-2, 21, but with each choice weighted by the measure P, (4.la), is < z. It is easy 
to check that the derivative of this probabilistic metric in the Cebygev case coincides 
with the previous G(z) (3.24). 

Another simple consequence of the dispersion (4.6) is that the CebySev mixing is 
totally unstable, Let x and y be two initial points separated by an arbitrarily small 
distance, i.e., 1 x - y / < 6. Then a stable evolution of the mixing would require that 
for every E > 0 there exists a 6 > 0 such that 

If”(x) -PC VII < E, forall n 2 1. (4.7) 

However, we have already seen that the asymptotic dispersion is 16/7r2, cf. (3.25a) 
and (3.25b), and therefore the stability criterion (4.7) will be violated for E < 16/r2. 

A much stronger result is implied by the following 

THEOREM [ll, 451. Let (Sz, d) be a metric space and (&?, P) a probability space. 
Suppose that the domain of the probability measure P includes all Borel sets of 9, and 
P(Q) > 0 for every open ball Q in Sz. Then if T is a mixing transformation on (Sz, P) 
and S is a subset of 0 with positive measure 

!i~ d(T”S) = d(Q), (4.8) 

where as usual the diameter of a set 3 is defined by 

d(3) = sup(d(w, , wz)] wl, o2 E 3). 

Loosely speaking this means that arbitrarily small sets of positive measure are 
dispersed throughout 52 by mixing processes: In this respect it is clear that Hopf’s 
mathematical formulation of mixing [28] accomplishes precisely what Gibbs had 
originally intended [46]. 

The dispersive nature of the mixing is manifested both in the asymptotic “steady 
state” distribution described by the probabilistic metric FJz) (4.6), as well as in the 
divergence of the individual orbits which appears at every iteration. These global and 

581/32/z-4 
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local properties are connected by the mean square statistical distance (z2(n)) defined 
in eq. (3.3Oa). For instance averaging (3.3Oc) over all IZ yields 

f;lz 12-l C (z”(n)) = 8(sin2(2”-l+)), = 4; 
n 

(4.9a) 

and this value agrees with the mean square distance inferred directly from the proba- 
bilistic metric (3.24) i.e., 

I 
4 

dz z2G(z) = 4. (4.9b) 
0 

On the other hand the magnitude of the local dispersion (3.30d) is scaled by the 
initial mesh size because the offset angle C$ determines the spacing of all the seed 
pairs xoi and yoi in (3.29). Nevertheless there are intrinsic ways of gauging the rate of 
dispersal [67]: One first eliminates the scale dependence by taking derivatives,cf. (3.30d) 

+ [(z”(n))]“” Id. = 2n+ri2; (4.10) 
+ 
O+ 

and then averages with respect to n in order to estimate the dispersion per iteration. 
In view of the exponential dependence on n it is obviously most convenient to average 
the logarithms. This finally leads to a simple measure of the intrinsic dispersion 

Z@ = lim n-l In n+m I-$- Kz2(4>l”” Id ,+I = In 2. 

It is easy to check that the corresponding result for the mth order CebySev poly- 
nomials is, cf. (3.30e) 

B(G) = In m, m 3 2. (4.1 lb) 

A far more abstract way of characterizing the dispersion rate associated with 
mixing is by means of the metric and topological entropies of Kolmogorov and Adler 
[47]: Let &’ be an open cover of a compact space fin, and N(d) denote the minimum 
cardinality of all sub-covers of &. Then H(d) = log N(d) is defined to be the entropy 
of ~2. The join of the two covers ~2, %? is the cover &’ v B = {A n B; A E ~2, B E 9iY}. 
Now suppose that T is a continuous map of J2 into itself; then the connection with 
mixing enters by considering the joins associated with the iterates of T. Specifically 
the entropy of T with respect to the covering ~2 is defined to be the limit 

h(T, a!) = $5 r+H(sit v T-l& v T-2aZ v ... v T-n+l~). (4.12) 

The intrinsic dispersion of T can then be obtained by averaging over the auxiliary 
coverings &‘. Topologically this can be done with refining sequences: in particular 
we say that a cover g is a refinement of the cover & if every set of .$? is a subset of 
some set of &‘. If we denote this relation by JZ?’ < B?, then a refining sequence is a set 
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of open covers satisfying &m < &m-t1 , which is complete in the sense that for every 
open cover 3 of 9 there is some J&,, such that Z# < &m . Finally the topological 
entropy of the mapping T is defined in terms of the limit 

h(T) = ilr, W, din). (4.13) 

In the particular case of the CebySev polynomials it has been shown by Adler and 
McAndrew that the topological entropy is given by [35] , 

h(C,) = In m, m 2: 1. (4.14) 

The numerical coincidence of (4.11 b) and (4.14) may be significant insofar as it 
suggests a “microscopic” interpretation for the topological entropy. From a physical 
point of view it is of course clear that “entropy” is a misnomer in this context because 
the topological entropy has no connection with the properties of the “equilibrium” 
state, i.e., the asymptotic dispersion described by the probabilistic metric F,;(z); 
cf. (4.6) and footnote 22 of reference [448]. Rather the simple criterion (4.1 la) indicates 
that the underlying concept is the rate of entropy production, or numerically the rate 
of randomization. 

Clearly the topological entropy rate (4.14) discriminates between the non-mixing 
CebySev polynomial C, = x and all the mixing polynomials. There is a general 
surmise that the demarcation between the ordered and the disordered evolution of 
arbitrary complex systems corresponds to a transition to non-vanishing values of the 
topological entropy rate. Complex systems tend to have numerous instability zones 
and these generate patches with positive entropy rates [68]. Unfortunately applica- 
tions relevant to physics (turbulence?) are still far too speculative to warrant dis- 
cussion in print. However, some promising headway has been made with computer 
simulations of the iterated reflections of ideal “billiards” confined to convex domains. 
The key result is that billiard flows inside polygons and circles have vanishing entropy 
[19], whereas billiards in a stadion-a region whose boundary consists of two equal 
parallel segments joined by two semi-circles-are a K-flow and therefore mixing 
[18]. The point of the computer simulations then is to follow the collapse of the 
stadion billiard trajectories into ordered patterns as the stadion is smoothly deformed 
into a circular colosseum. It has been shown by Benettin et a/. [41, 491 that this 
transition can be described by a numerical version of the topological entropy: in 
fact their arguments provide a direct link between the intrinsic dispersion rate (4. I I b) 
and the topological entropy (4.14). The quantum version of this problem is discussed 
in [69]. 

We note first that the intrinsic dispersions (4.1 la) and (4.11 b) correspond precisely 
to the quantities denoted by k(~, X, d) in Section Ilb of reference [41]. These objects in 
turn approximate the so-called maximum Lyapunov characteristic of the flow. This 
relation is quite plausible since the highly technical construction of the Lyapunov 
characteristic is in fact a sophisticated (albeit differentiable) version of the definition 
(4.1 la). In essence one considers an n-dimensional differentiable manifold .)fl, a 
vector field X defined on .M, and a flow {T”) on &’ induced by X. For .Y E /i, the 



194 ERBER, EVERETT, AND JOHNSON 

tangent space to & at x and the norm induced on it by the metric of JY are denoted 
byE,andli ... I/ respectively. The tangent mapping of E, onto ET,+.) induced by the 
diffeomorphism T” then is dT,“. It is also assumed that the flow {T”} preserves a 
normalized measure CL. All of this machinery can then be combined to show that there 
exists a measurable set JY, C .A, such that for every x E J?‘, and for almost every 
vector e E E, , e # 0 the limit 

e !$ n-l In II dT,“(e)l~ = X(x, e) (4.15) 

exists, is finite, and non-negative. For the CebySev mixing the Lyapunov characteristic 
is given by 

B(C,,) = In m ---f h(x, e), m 3 2. (4.16) 

This identification substantiates the interpretation of k(7, x, d) given in Section 2B of 
reference [49]. 

Next we use Piesin’s Theorem [50] to connect the metric entropy of Kolmogorov 
[51] with the Lyapunov characteristic, viz. 

(4.17) 

In the present instance the integration is trivial, and accordingly the metric entropy 
of the CebySev mixing, with respect to the measure (4.la), is simply 

hPc(Cm) =: In m, m > 2. (4.18) 

Finally, the technical step of verifying the agreement of the metric and topological 
entropies for the CebyZev mixing has been carried out by Ranade [52]. Q.E.D. 

5. VARIABLE PRECISION SIMULATIONS 

Small computers are unsuitable for simulating the behavior of CebySev mixing. 
For instance in the extreme case of a device which can only compute with the digits 0, 
* I, $2, the x2 - 2 iterations degenerate into the following pattern: 

input first iteration second iteration nth iteration 

t-2 +2 -t-2 - +2 
+1 -1 -1 - -1 

0 -2 +2 - +2 
-1 -1 -1 -1 
-2 -2 $2 7 +2 

(5.1) 

Obviously there are no cycles, and after only two iterations everything has collapsed 
into the two fixed points -1 and +2. However. as the machine capacity is increased 
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more numerical and combinatorial complexity can appear in the iterations, and 
gradually the statistical regularities associated with the CebySev mixing begin to be 
superposed on the computer generated sequences. The transition from the combina- 
torial to the statistical regime can be modeled by programming a large computer, 
such as a Univac 1108, to carry out the CebySev iterations with adjustable N-bit 
modular arithmetic. In this way one can empirically establish that beyond the range 
N F 24 the computer simulations furnish usable strings of pseudo-random numbers. 
In addition to deliberately “expanding” the computer it is also interesting to model 
the effects of perturbing the mixing flow. This can be done with a slight programming 
change in which variable truncations play the role of the perturbations. As indicated 
in Section 2(vii) we expect a greater fidelity in the simulations when the intrinsic 
mixing rate (4.1 lb) dominates the rate of immigration of the round-off errors (3.31). 

In practise the variable truncation studies were carried out on an 1108 in double 
precision arithmetic. We chose as the initial “seeds” the numbers xgi = i x lo-“, 
i = 1, 2, 3,. . ., 200; and used a slight modification of (3.14b) to generate iterates 
with variable truncations, viz. 

-?gel = & [lONOX,‘] - 2, N,, = I , 2,. . ., 7. (5.21 

The iterations were continued until either (a) we reached the index n = 104, or (b) 
located two positive integers ki and Ii satisfying the condition cf. (3.7a)-(3.7c) 

Obviously ki corresponds to the index where the iterations stemming from 5,: enter 
a terminal loop, and li is the length of the loop, cf. (3.17) and (3.23). It is convenient 
to summarize all of this information by introducing two auxiliary indices: 

K(N,) = Max{k,}, (5.4) 
and 

L(N,) =: n li . (5.5) 
(distinct li) 

Clearly K(N,,) represents the effective onset of cyclic behavior because for IZ > K(N,) 
all the sequences {Xlli} have entered terminal cycles. Figure 1 is a semi-logarithmic 
plot showing the variation of K with N,,: the essential feature of this graph is 
the appearance of a sharp “knee” in the vicinity of N, >” 7. The object L(N,,) repre- 
sents the common periodicity of all the terminal loops; the growth of this index is 
displayed on Fig. 2. It is also evident from this graph that the mixing simulations 
“take off” when > 7 decimal place arithmetic is available on the computer. 

The “expanding computer” experiments were carried out in b-bit modular arithmetic 
for b varying between 1 < b < 24. In this case it was convenient to rescale the itera- 
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FIG. 1. Onset of cyclic behavior in CebySev mixing simulations. The dots indicate the variation 
of the function K(N,), cf. (5.4). In all figures the boxes indicate lower limits (> 104). 
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FIG. 2. Common periodicity of cycles in CebySev mixing simulations. The figure displays the 
variation of the function L(N,), cf. (5.5). 
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tions to the interval x” E [-1, l] and arrange the program to compute, cf. (3.4) and 
(3.14b), 

zn+l = - ib [2b’-%,2] - 1. (5.6) 

For b < 9 we traced the iterative behavior of all 2b+1 + 1 binaries in the interval 
[-1, 11. Figure 3 shows that the trivial fixed point collapse (5.1) is augmented by the 
appearance of a single terminal cycle of length 3 when b = 4. Beyond this threshold 
there is an increase both in the number of cycles as well as their length. However, due 
to practical limitations of computer time these results could only be spot checked in 
the range 9 < b < 24: this demarcation is indicated by the “exact” and “statistical” 
portions on Figs. 3 and 4. Presumably the interplay between the combinatorial and 
statistical elements tends to produce a scatter in the cycle lengths. Nevertheless there 
appears to be a regularity in the increase of the maximum cycle lengths in the range 
5 < b < 23. At b 7 24 the maximum cycle length jumps to a value exceeding 104; 
this behavior parallels the “take off” in the mixing exhibited on Figs. 1 and 2. 

These features are also apparent on Fig. 4 which summarizes information on the 
free running intervals, cf. (3.17). In the range 1 < b < 9 we show the onset of cyclic 
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FIG. 3. Cyclic behavior in Cebysev mixing simulations. The lengths of the individual terminal 

cycles are shown as functions of the machine accuracy. For b < 9 all accessible binary numbers 
were followed to their terminal cycles; the results for b > 9 are statistical spot checks. 
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FIG. 4. Onset of cyclic behavior in CebyHev mixing simulations. The points indicate the lengths 
of the intervals of free running. See the text for a complete explanation. 

behavior by plotting K(b) which is the binary analogue of K(N,,), cf. (5.4). For larger 
values of b, 9 < b < 24, we display the overall trends including the statistical scatter 
of the individual free running intervals. Once again there is an indication of a sharp 
increase in the vicinity of b 7 24. In view of the effective conversion between 
binaries and decimals, i.e., b - (log,lO)q - 3.32 q, it is obvious that all of the graphs 
shown on Figs. l-4 are consistent, exhibiting symptoms of a “stochastic transition” 
at a computer capacity of the order of 7 decimal figures. 

It is also interesting to check on the growth of computer noise by comparing the 
influence of simple truncation (“7”‘) and roundoff (“R”), i.e., increasing the last 
available guard digit by l/2 and then truncating. In the extreme case (5.1) these 
distinctions are of course irrelevant. However, with increasing computing capacity 
variations in the truncation routines and inherent differences in the computers give 
rise to inequivalent perturbations of the mixing. 

Let us first consider an HP-25 (10 digits + 1 guard) and an SR-52 (10 digits $- 
3 guard) programmed to carry out the x2 - 2 iterations according to (5.2), but 
restricting the arithmetic to 3 place accuracy, i.e., NU = 4001 cf. (3.11a), by using 
roundoff. In this case we spot checked the iterative behavior of some of the same 
seeds that were used in Table II(a): The results are given in Table V-the essential point 
being that the same results were obtained on both computers. When the arithmetic 
accuracy is increased the mixing simulations become more sensitive to computing 
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TABLE V 

Computer Simulations of CebySev Mixing: NU = 4001, cf. (3.1 la) 

Length of 
Initial number Interval of free running terminal loop 

a-3 16 23 
n/2 40 23 

(d/z - 1)2 71 23 
e-l 42 23 
1.555 78 23 

TABLE VI 

Computer Simulations of CebySev Mixing: 
Comparison of Different Machines and Truncation Methods. 

NU = 4 x 10s + 1, (3.11a) 

Initial number Approximate interval of free running 

HP-25 HP-9100 

T” Rb T R 

7r-3 1,556 - 5,531 6,606 
(d2 - 1)2 541 16,720 2,398 5,677 

5712 4,956 14,091 7,415 17,143 
772 - 9 13,054 5,992 3,045 11,127 

d - 306 10,271 6,703 8,703 2,194 

“T = simple truncation. 
b R - roundoff (see text). 
c Iterations terminate on fixed point +2. 

Length of terminal loop 

HP-25 HP-9100 ~- 

T R T R 

2,498 +2 35 3,109 
4,612 10,525 $2 +2" 
2,498 10,525 35 3,109 
2,498 10,525 $2" 3,109 
2,498 10,525 35 3,109 

TABLE VII 

Variable Precision Simulations of CebySev Mixing on an HP-25 with Truncation 

Approximate interval of free running Length of terminal loop 

NU- 1 (3.11a) 4 x 10s 4 x lo6 4 x 108 4 x 109 4 x 10s 4 x 106 4 x 108 4 x 109 

Initial number 

v-3 3 2,140 1,556 16,064 18 402 2498 4158 

$2 - 1)s ;y 1,038 539 4,956 541 21,491 21,348 18 18 402 402 4612 2498 4158 4158 
e-l 9 - 3,534 14,211 12 - 4612 4158 
772 - 9 - 830 13,054 12,773 - 402 2498 4158 
v5 - 306 - 496 10,271 26,654 - 402 2498 4158 
1.555 . . . - - 2,676 30,878 - - 2498 4158 
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noise and the results depend both on the machine as well as the truncation conventions 
-all of these features are illustrated in Table VI. Finally, in Table VII, we present 
some information supplementing the data given on Figs. l-4. 

6. TERMINAL CYCLES 

It is interesting to see how the computer iterations represent a synthesis of the 
pseudo-random character of the CebySev mixing and the asymptotic regularity 
imposed by the terminal cycles. Extensive numerical trials have shown that on large 
machines (NU 7 lOlo) with long terminal cycles, i.e., nL. - n, N N$’ (3.22), most 
of the statistical properties of the CebySev mixing are preserved on the cycles. An 
exception is the auto-correlation (2.4a) which becomes a Kronecker function with 
period nL. - nf . Some of the statistical data concerning the behavior of the agitation 
(3.12a) and the frequency distribution (3.9b) on terminal cycles is summarized on 
Table VIII. On the basis of all the evidence from the computer experiments it may not 
be too fanciful to describe this as a situation in which order masquerades as chaos. 
Naturally these features are relevant to communications codes. It was originally 

TABLE VIII 

Statistical Properties of Terminal Cycles: Agitation (3.12a) and Normalized Frequency Distribution 
(3.9b). Data for 1.6 0.0624 0.0612 0.0606 0.0613 

1.6 1.4 0.0476 0.0483 0.0488 0.0484 
1.4 1.2 0.0404 0.0426 0.0422 0.0420 
1.2 1.0 0.0388 0.0376 0.0375 0.0382 
1.0 0.8 0.0357 0.0357 0.0366 0.0357 
0.8 0.6 0.0351 0.0342 0.0335 0.0340 
0.6 0.4 0.0326 0.0322 0.0324 0.0329 
0.4 0.2 0.0323 0.0331 0.0330 0.0322 
0.2 0.0 0.0316 0.0309 0.0320 0.0319 
0.0 -0.2 0.0325 0.0330 0.0317 0.0319 

-0.2 -0.4 0.0318 0.0317 0.0317 0.0322 
-0.4 -0.6 0.0320 0.0330 0.0341 0.0329 
-0.6 -0.8 0.0346 0.0337 0.0340 0.0340 
-0.8 -1.0 0.0360 0.0355 0.0352 0.0357 
-1.0 -1.2 0.0388 0.0384 0.0382 0.0382 
-1.2 -1.4 0.0423 0.0418 0.0423 0.0420 
-1.4 -1.6 0.0492 0.0478 0.0482 0.0484 
-1.6 -1.8 0.0611 0.0611 0.0615 0.0613 
-1.8 -2.0 0.143 0.144 0.144 0.144 
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pointed out by Shannon [53] that mixing transformations could be adapted to 
scrambling messages. Since decrypting relies heavily on statistical analyses the 
camouflage of order by mixing is enhanced in cases where the probabilistic metric 
information is equilateral [39]; specifically, as in (4.6), the distribution function 
F,(Z) is independent of the underlying (x, y) “message” configuration when the 
product transformation is ergodic. These concealment possibilities can be extended 
still further in virtue of the sensitivity of the terminal cycles to perturbations (Table VI), 
as well as the statistical indistinguishability of the terminal cycles from the intervals of 
free running (Tables I and VlII), see also reference [54]. 

Crude numerical arguments based on (3.21~) and (3.22) indicate that the total 
number of terminal cycles for a given computer and programming mode is rather 
small. To some extent this can be confirmed experimentally. Let us consider a b-bit 
machine with a total “universe” of NL7 - 2b numbers; (5.6) et seq. Furthermore let 
C(b) denote the corresponding number of iterates which are members of terminal 
cycles. Then the data accumulated in connection with Figs. 14 and Tables V-VIII 
show that IV,, and C(b) are empirically related by the ratio 

C(b) 
Ty-- 

2-0.576 (6.1) 

which diminishes rapidly with increasing computer size. More precisely for b >” 4 
the combinatorics of the iterations lead to an increase in the number of terminal 
cycles; however, for still larger values of b, say b 7 25, the number of terminal cycles 
which can be located by statistical methods remains rather small. 

The number of terminal cycles is significant because the entire iterative scheme can 
be envisaged as evolving in reverse order-this corresponds to the set C(b) expanding 
throughout the universe N, . Mathematically this reversion presents no difficulties 
because the pre-images are well defined even though the CebySev mixing is not 
invertible. For instance the first and second pre-images of x are 

+((x + 2)lj” + 2y, 

i” 

t-(x + 2)1’2 < 
-((,y + 2)LQ j 2)‘/“, 

. . , 
.E 

\ 
-(x + 2y < 

f-(x + 2y + 2)‘/“, 

-(-(x + 2)1/2 + 2yy 

(6.2) 

and obviously at the nth stage the pre-images comprise 2” numbers (of course there is 
no contradiction with the preservation of measure). At first sight one might then 
suppose that the terminal cycles are surrounded by sunbursts of cascading pre-images 
somewhat resembling the pattern indicated on Fig. 5. However, it is easy to show 
by direct enumeration that this is actually an impossible configuration on a finite-bit 
machine. Consider for instance the terminal loop of length 4158 which occurs on 
an HP-25 calculator, cf. the last column of Table VII. If in fact every element of the 
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FIG. 5. An “impossible” configuration of pre-images, cf. (6.2). 

loop gave rise to a pre-image chain, as indicated in eq. (6.2), then by the nth stage the 
total set of numbers included in the “sunburst” would be -4158 Y 2’“. Since the I 
total universe of accessible numbers is 4 x log + 1, it is apparent that the reverse 
iterations will saturate the computer capacity in the vicinity of n - 30. However, 
this estimate differs by a factor of IO3 from the theoretical (3.22) and experimental 
(column 5, Table VII) values for the average length of the interval of free running! 

The flaw of this argument lies in the presumption that the pre-image chain (6.2) can 
be simulated on a computer. A little experimentation will show that for any digital 
device the limited accuracy of the machine arithmetic entails the existence of gaps so 
that for any given value of (X + 2)lj2 one or both of the pre-images (-(X i 2)lj2 -L 2)lj2 
and ((x + 2)1/2 + 2)1/2 may not be included in the accessible universe of numbers. As a 
consequence it is inevitable that on a finite digital device all pre-image chains terminate 
on points. The genealogical analogy implied by (6.2) suggests that we call these 
“orphan” or “originating” points. In any event it is clear that the CebySev simulations 
can be visualized as flow networks originating from a discrete set of orphan points; 
aggregating into larger streams by confluence; and finally merging into a small set of 
terminal cycles. The inherent computational asymmetry of this process arises from 
the simple but deep distinction between the pre-image chain (6.2) and the forward 
iterations (3.17). In coding terminology this corresponds to the effective construction 
of so-called one way functions [54]. 

Figure 6 indicates schematically the structure of a flow network for an SR-56 
programmed to iterate in 3 place accuracy. In this case the CebySev mixing simulations 
lead to a single terminal loop with 76 numbers. Starting from each of these numbers in 
turn, it is possible to trace out the complete pattern of pre-images. In this way the 
graphical linkages-induced by the CebySev iterations-of all the 4 x lo3 + I num- 
bers in the computer universe can be determined. Unfortunately at this low level of 
precision the CebySev simulations are perturbed by combinatorial factors (cf. Sec- 
tion 5) and therefore the structural peculiarities exhibited in Fig. 6 may not be typical. 
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,_ MAJOR DRAINAGE BASINS _~ 
\ 

x-orphan point 

FIG. 6. Flow network or de Bruijn diagram [13] for a small scale &bySev mixing simulation 
(SR-56 programmed in 3-place accuracy). The terminal loop is insulated from the rest of the com- 
puter “universe” by a cluster of “orphan” points. Note the contrast with the pre-image pattern 
shown on Fig. 5. 

The essential point of these tedious studies was to gain some insight into the nature of 
the terminal loops. In this respect the two most striking features of Fig. 6 are: (i) the 
almost total separation of the terminal loop from the rest of the universe by sets of 
orphan points; and (ii) the tendency for most of the rest of the points in the universe 
to cluster about a few major “drainage basins” in the flow network. 

The insulation of the terminal loops can easily be described in terms of the pre- 
image chain (6.2). Suppose in particular that x is a point on a terminal loop linked 
to descendants and ancestors in the following sequence: 

... + gl - 4.9 ~- 2 c ,y2 - 2 t x t -(x -+ 2)V t +(-(x + 2)‘/2 + 2)1/Z c “’ 

(6.3) 

It is then evident that the terminal loop must be surrounded by a.first pre-image ring 
each of whose elements is the negative of a number on the terminal loop. In particular 
the ancestors corresponding to (6.3) on the first pre-image ring are the numbers 

-(x4 - 4x2 + 2), -(x2 - 2), -x, +(x + 2)1’2, -(-(x + 2)“2 + 2P2. (6.4) 
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Carrying the reversion back one more step leads to the second pre-image ring: the 
ancestors corresponding to (6.4) then are the elements 

&(x” - 4x2)1/2, &(-x2 + 4)1’2, 5(-x + 2)1’2, &((x + 2)1’2 + 2)1’2, 

&[--(-(x + 2)1/2 + 2)1/2 + 2]1/2; (6.5) 

and as indicated previously these numbers may not be accessible on the computer. 
Figure 6 and Table 1X display the curious feature that more than 80 % of the elements 
of the second and third pre-image rings are orphan points; in other words egress 
from the terminal cycle is possible only at a few junction points. Similar results have 
been obtained for the 95,447 terminal cycle on an HP-9100 (Table VIII), and we 
consider it likely that this may be a genera1 property of the flow networks. 

There may be some correlation between the frequency distribution of the CebySev 
mixing and the tendency exhibited in Table IX for points near 5-2 to be preferred 
ports of entry onto the terminal loop. However, it does not seem plausible that metric 
concepts are adequate to describe the characteristics of the iteration patterns. After 
all, the essential import of the information on Table VIII is to confirm that the asymp- 
totic dispersion (4.6) is equilateral, i.e., independent of (x, y), and therefore in a 
metric sense the terminal loops are indistinguishable from the rest of the flow network. 
Moreover, it is impossible to characterize the numbers on the terminal loop by 
metric stability criteria: these require some type of norm such as (4.7), but in virtue of 
the fact that x2 - 2 has no fractional iterates whatsoever-a basic point to which we 
shall return in Section 7-it is futile to look for an association between metric resem- 
blance and genealogical kinship (6.2)! The conspicuous clustering of the orphan points 
around the terminal cycles may, however, be interpreted as a clue pointing in the 
direction of a topological stability concept. 

Finally it should be noted that the entire situation is altered if the mixing simulations 
are not restricted to simple iterations without memory. It is then easy in practise to 
extend the intervals of free running by interleafing or cross-feeding the elements of 
several mixing simulations run in parallel. A more interesting possibility is to perturb 
the simple mapping sequence (3.17) with a memory-dependent feedback. Specifically 
if we have arrived at the mth term of the sequence {x,,}, it is possible to associate a 
“memory” with the values of the precedingj terms by forming the product 

The standard CebySev iteration (3.17) can then be perturbed with the increments 
UP.&), i.e., 

... - JPCX, + Sp,(x,)l - Am-w,+1 + ~Pj(X,+,)l - “‘1 (6.6) 

where 6 is adjusted to be sufficiently small so that the perturbation does not spoil the 
statistical stability of the flow. In this case both of the sequences (3.17) and (6.6) will 
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tend to encounter the same element again after about NY2 iterations, but owing to the 
memory dependence (6.6) will not degenerate into a clock. 

7. OTHER SIMULATIONS OF RANDOM PROCESSES 

The procedures developed for the Cebygev mixing simulations can in principle be 
applied to other mathematical models of random processes. A familiar group of 
examples is the bakers’ transformations [28, 171 which are mappings of the unit 
square with periodic boundary conditions. In one version the mixing is generated by 
iterating the simple two-dimensional mapping 

g(x, Y> - (x + Y, x + 3J) (mod 1) (7.1) 

in which g plays a role analogous to fin (3.1). One can then easily check that the nth 
iterate is given by [55] 

gn(x, Y) -+ (&-1x + Fz,Y, &211x + &+IY) (mod 1) (7.2) 

where FN denotes the Nth Fibonacci number (F,,, = F,,-l + FJ,,-2 ; Fl = F, = 1). 
This result parallels the nth iterate Cebygev expression (3.3). The fidelity of the 
mixing simulations can also be monitored by statistical tests similar to those developed 
for the CebySev iterations. The probabilistic metric corresponding to (3.24) for the 
bakers’ transformation is [55] 

27rz, 
B(z) = 

0 < z < l/2; 

2[2?T - 8 cos-l(l/2z)], l/2 < z < 2-l/2; 
(7.3) 

where z denotes the Euclidean distance between x and y, and the upper bound z < 
2-112 stems from the periodic boundary conditions (torus mapping). The asymptotic 
dispersion or mean distance between the points x and y can be obtained by elementary 
quadratures, cf. (3.25a) and (3.25b). In the present instance this is given by 

DB = 2~ s”” dz z2 - 8 j’-“’ dz zB cos-‘(1/2z), 
0 l/2 

= *[1/T + ln(l + 1/2)] g 0.382 597 8. (7.4) 

The frequency distribution (3.9b), agitation (3.12a), and other statistical properties of 
the mixing sequences (7.2) may then be derived by straightforward means. The 
remaining basic statistical index, the Kolmogorov rate of entropy production (4.12), 
can also be determined explicitly since the bakers’ transformation is isomorphic to a 
(l/2, l/2) Bernoulli shift [56, 521. It is interesting that the result for the bakers’ trans- 
formation 

h(g) = In 2 (7.5) 
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coincides numerically with the entropy production for the second degree CebySev 
polynomial (4.14)-auguring well for the computer simulations-although the 
CebySev mixing and two-sided Bernoulli shifts are not isomorphic [55]. This difference 
is crucial for physical interpretations (vi& in&). 

The CebySev and bakers’ transformations are only two isolated examples of a large 
class of mixing processes. It was shown by Brolin [21] that any non-linear polynomial 
has a restriction which is mixing with respect to an appropriate measure. Informally 
this means that any polynomial with degree > 2 mixes somewhere in the complex 
plane. In general, the set over which the mixing occurs is perfect but nowhere dense. 
In the special case that the mixing set is a Jordan curve, i.e., an arc or a closed curve 
without self-intersections, it was shown by Ranade [52] that the corresponding nth 
degree polynomials are isomorphic to one-sided Bernoulli n-shifts and therefore 
have topological and metric entropy production rates equal to In n, cf. (4.12) and 
(4.14). From this perspective the entire CebySev mixing theory is merely a special 
case of Brolin’s theorem in which the Jordan curve is a real interval, cf. (3.4) and 
the polynomial degree assumes its minimum value. The implication of these results for 
practical computer experiments is twofold: not only is the choice of the iterating 
polynomial crucial, but it is also important to find the region in the complex plane 
where the mixing actually occurs. 

There are a wide variety of problems in fluid mechanics [15, 571 and epigenetic 
networks [58] which involve processes that are apparently non-periodic and irregular. 
In computer simulations it is therefore essential to utilize mathematical models that 
will stave off collapse into terminal cycles as long as possible. Mixing processes are 
of course plausible candidates because they simulate pseudo-random behavior and 
have long periods of free running before merging into terminal cycles. However, in this 
respect the iteration of rational functions is only a special case. Other likely prospects 
for modeling irregular behavior with very long cycles can be identified with the help 
of more general, albeit weaker, results of Sarkovskii [20]. The key point is that compli- 
cated iterative structure can, so to speak, be “imposed from below”; this notion is 
also forcefully expressed by the title of reference [59], “Period Three Implies Chaos.” 
Let us recall that a point x, is said to be a fixed point of order k of a function h if 
W(X~~~) = x,,, and hj(x,,,) f x, for all j = 1, 2,..., k - 1; cf. (3.7b). Suppose that h 
belongs to the class C of all continuous, real-valued functions defined on (- cc, cx), 
i.e., it is a mapping of the real line into itself. Now define an ordering relation < for 
positive integers as follows: k < n if for any function h E C the existence of a fixed 
point of order k of h implies the existence of a fixed point of order n of h, but not 
conversely. Sarkovskii’s basic result then is that the set of positive integers is ordered 
by the relation < in the following way: 

3<5<7<9<11-:...<3~2<5~2-=...<3~2~<5~2~ 

< ..’ < 23 < 22 < 2 < 1. (7.5) 

So for example if a function has a fixed point of order 8, it necessarily has fixed points 
of order 4, 2, and 1, but nothing more can be asserted; on the other hand if it has a 

5811342-5 
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fixed point of order 3, then there must exist fixed points with arbitrarily long periods: 
Furthermore this entails the existence of an uncountable set of points, not necessarily 
with positive measure, which wander perpetually under iteration since they do not 
asymptotically approach any periodic point [59]. 

All of these results are consistent with the experimental finding that functional 
iteration can indeed be adapted to the computer simulation of random processes. 
Moreover, the simple functional form of some of the mixing transformations suggests 
direct physical realizations. For instance the quadratic CebySev polynomial describes 
the operation of a biased product detector or, equivalently, an amplitude limited 
nonlinear amplifier. In either case (3.13) corresponds to a voltage transducer with the 
property that [38] 

I/(output) = [V(input)]” - 2, 

where 

-2 < V(input) < +2 volts -+ -2 < V(output) < +2 volts 

A cascade of such devices linked together on an analogue computer will exhibit all the 
erratic characteristics of mixing. However, it is important to realize that the C’ebySev 
mixing cannot be associated with the evolution of any Hamiltonian system. Sinai’s wry 
definition “ . ..ergodic theory consists of the study of the statistical properties of the 
groups of motions of non-random objects” [19] also points up the narrow scope of 
the physical models inherited from the historical association of Hamiltonian mechanics 
and ergodic theory [60, 611. 

The gap between Hamiltonian mechanics and iteration arises from an embedding 
problem: Specifically let us suppose that the state of a physical system can be des- 
cribed by a function F(t, X), where X corresponds to the initial conditions and t 
denotes some index of the evolution-usually the time. If the evolution has no memory 
dependence, i.e., no hysteresis, then the state of the system at “time” t, + t, will be 
identical to the state reached in the two-step transition 0 + t, , t, + t, ; consequently 
F must satisfy the basic translation or flow equation [62] 

W, + t, , X> = Fit, , F(t, , X)1. 

The elementary transcription F(t, X) = g,(X) then permits us to rewrite (7.7) with a 
somewhat different emphasis: 

gtl+t,(W = &J&W)1 = gt,kdml. 

This form exhibits the connection between evolution and functional iteration. Any 
family of functions {gt} satisfying the basic relation (7.8) for all t, , t, > 0 is called a 
one-sidedflow. A two-sided$ow is a similar family of functions in which the index t 
ranges over all real numbers [63]. Flows are special cases of Abelian semi-groups. A 
function f is embeddable in a flow if there exists a flow {g,} such that .f = g, for some 
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positive t (the positivity is not an essential restriction). As a consequence of the 
preceding we have the 

LEMMA [63]. !f a function f is embeddable in ajow, then f has iterative roots of all 
orders, i.e., there exist functions h such that 

h’“(X) = f(X) for all integers n 3 2. (7.9) 

In the Hamiltonian case F(t, X) corresponds to the principal function, and the 
associated (differentiable) flow g,(X) describes the continuous sequence of infinitesimal 
canonical transformations that governs the evolution of the characteristic surfaces [64]. 
On the other hand the CebySev polynomials satisfy the following 

THEOREM (Sklar [63]). A suficient condition for the nth order CebySev polynomial 
C, to have no fractional iterates whatever is that 

no - n is not divisible by p2 (7.10) 

for any prime p < n. Direct calculation shows that this condition is satisfied for n = 
2,3,6, 11, 14, etc. (C, has iterative square roots but these are not even measure preserving 
[55, 661.) 

This theorem and the preceding lemma imply that the CebySev iterations cannot be 
embedded in any one sided or two sided flow; therefore it is impossible to construct a 
Hamiltonian system whose evolution describes the CebySev iterations. Clearly there is 
a profound difference between systems in which the t-dependence in (7.8) is so smooth 
as to be continuous or even differentiable, and non-embeddable systems in which the t 
variation has an inherent graininess or quantization. The physical implications of 
non-embeddability can be quite drastic: If we recall the electrical realization of C, as a 
biased product detector, then (7.9) and (7.10) show that it is impossible to construct n 
(2 2) identical “black boxes” which, when connected in cascade, reproduce the 
voltage transformation (7.6). Of course mathematical theorems cannot prohibit us 
from looking “inside” the product detectors or the computers which are programmed 
to carry out the CebeSev iterations: At this microscopic level one might presume to 
find “hidden variables” which interpolate in a smooth and well defined way “between” 
the quantum steps of the non-embeddable flow. However, these distinctions between 
the evolution of structures and Hamiltonian systems involve epistemological questions 
which would take us too far afield. 
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